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Logit and Probit Models
 Another criticism of the linear probability model is 

that the model assumes that the probability that Yi =
1 is linearly related to the explanatory variables
 However, the relation may be nonlinear

 For example, increasing the income of the very poor or the very 
rich will probably have little effect on whether they buy an 
automobile, but it could have a nonzero effect on other income 
groups

 Logit and probit models are nonlinear and provide 
predicted probabilities between 0 and 1
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Logit and Probit Models
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Logit and Probit Models
 Suppose our underlying dummy dependent 

variable depends on an unobserved utility 
index, Y*

 If Y is discrete—taking on the values 0 or 1 if 
someone buys a car, for instance
 Can imagine a continuous variable Y* that reflects 

a person’s desire to buy the car
 Y* would vary continuously with some explanatory 

variable like income



5

Logit and Probit Models
 Written formally as

 If the utility index is “high enough,” a person 
will buy a car

 If the utility index is not “high enough,” a 
person will not buy a car
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Logit and Probit Models

 The basic problem is selecting F—the cumulative density 
function for the error term
 This is where where the two models differ
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Logit and Probit Models
 Interested in estimating the β’s in the model
 Typically done using a maximum likelihood 

estimator (MLE)
 Each outcome Yi has the density function ƒ(Yi) 

= Pi
Yi (1 − Pi)1 − Yi

 Each Yi takes on either the value of 0 or 1 with 
probability ƒ(0) = (1 − Pi) and ƒ(1) = Pi
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Logit and Probit Models
 The likelihood function is 
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Logit Model
 For the logit model we specify

 Prob(Yi = 1) → 0 as β0 + β1X1i → −∞
 Prob(Yi = 1) → 1 as β0 + β1X1i → ∞
 Thus, probabilities from the logit model will be 

between 0 and 1
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Logit Model
 A complication arises in interpreting the estimated 

β’s
 With a linear probability model, a β estimate measures the 

ceteris paribus effect of a change in the explanatory 
variable on the probability Y equals 1

 In the logit model

The derivative is 
nonlinear and 

depends on the
value of X.
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Probit Model
 In the probit model, we assume the error in the 

utility index model is normally distributed
 εi ~ N(0,σ2)

 Where F is the standard normal cumulative 
density function (c.d.f.)
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Probit Model
 The c.d.f. of the logit and the probit look quite 

similar 
 Calculating the derivative is moderately complicated

 Where ƒ is the density function of the normal distribution
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Probit Model
 The derivative is nonlinear

 Often evaluated at the mean of the explanatory variables

 Common to estimate the derivative as the probability 
Y = 1 when the dummy variable is 1  minus the 
probability Y = 1 when the dummy variable is 0 
 Calculate how the predicted probability changes when the 

dummy variable switches from 0 to 1
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Which is Better?  Logit or Probit?
 From an empirical standpoint logits and probits typically 

yield similar estimates of the relevant derivatives
 Because the cumulative distribution functions for the two models 

differ slightly only in the tails of their respective distributions
 The derivatives are different only if there are enough 

observations in the tail of the distribution
 While the derivatives are usually similar, the parameter 

estimates associated with the two models are not
 Multiplying the logit estimates by 0.625 makes the logit estimates 

comparable to the probit estimates
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Censored Regression Model
 Often the dependent variable is constrained 

(or censored)
 Takes on a positive value for some observations 

and zero for other observations
 Represents non-continuous data as there is a large 

cluster of observations at zero
 Using OLS leads to biased estimates of the 

parameters
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Censored Regression Model
 Examples include data sets containing 

information on
 The number of hours people worked last week 

along with their age
 Some people will have worked a positive number of 

hours 
 Others (such as retirees) will not have worked at all 

and will report working zero hours
 Families’ expenditures on new automobile 

purchases during a particular year
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Censored Regression Model
 For the probit and logit we defined a latent 

variable Y*
i = βXi + ui with

 If Yi is not a binary variable but rather is 
observed as Y*

i if Y*
i > 0 and is not observed 

for Y*
i ≤ 0, then

u is assumed to follow the 
normal distribution with 

mean 0 and variance σ2.
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Censored Regression Model
 Called the Tobit model or the censored regression 

model
 To estimate this model, specify the likelihood 

function for this problem and generate the maximum 
likelihood estimator

 The (log) likelihood for the Tobit model is
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Heckman Two-Step Estimator
 As an alternative to estimation of the Tobit 

model using maximum likelihood methods, 
James Heckman has developed a two-step 
estimation procedure
 Yields consistent estimates of the parameters

 Suppose the model takes the form
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Heckman Two-Step Estimator
 The mean value of Y (if it is greater than zero) 

may be written as

 It can be shown that

 Where
Called the inverse 

Mills ratio or 
the hazard rate.
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Heckman Two-Step Estimator
 Regressing the positive values of Yi on Xi

would lead to omitted variable bias 
 If we could get an estimate of λ we could run 

ordinary least squares on X and λ
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Heckman Two-Step Estimator
 Heckman proposes

 Defining I as a dummy variable taking on the value 1 for 
the positive values of Y and 0 otherwise
 Ii = 1 if Yi > 0; 0 otherwise

 Estimate λ by estimating a probit model of Ii on X
 Since the probit model specifies Prob(Y = 1) = F(βXi), we can 

get estimates of β by estimating the probit model
 Can use these estimates to form

 Using the positive values of Y, run OLS on X and the 
estimated λ—will yield consistent estimates of β
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